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We study Ne interacting electrons confined in a one-dimensional quantum ring �QR� first by using a Hartree-
Fock approximation and then by introducing correlation effects. An external magnetic field B perpendicular to
the ring plane is considered. The energy spectra of low-lying states of the QR as a function of B and Ne are
obtained. A phase diagram is presented indicating a rich variety of ground states. By plotting the density
functions of the QR, the ground-state configuration is found to be a regular polygon.

DOI: 10.1103/PhysRevB.80.195115 PACS number�s�: 73.21.�b, 73.23.�b, 73.63.�b

I. INTRODUCTION

In recent years both experimental and theoretical physics
communities have devoted a great deal of attention to the
nanostuctures and their electronic properties.1 In particular a
big effort has been devoted to the study and the realization of
devices with a ring geometry at nanometric scale, known as
quantum rings �QRs�. A growing interest in studying QRs
arises because these systems are known to exhibit many
novel physical phenomena, e.g., persistent currents2–10 and
quantum-interference effects �which represent a paradigm of
quantum-mechanical phase coherence11,12�. Among these, the
most famous are the magnetic effect �Aharonov-Bohm13

�AB� effect� or the electric one �Aharonov-Casher14 �AC�
effect for particles with spin�.

More recently advances in nanofabrication technology al-
low for a certain number of electrons to be confined in quan-
tum rings QRs.15,16 Thus the problem of a few electrons in
QRs has been widely investigated16,17 by focusing both on
the transport and optical properties of interacting
electrons18�energy levels and far-infrared spectroscopy19�.
Specifically the energy spectra and the fractional oscillations
of the ground state were studied17,20–22 also by including the
effect of the magnetic field.23–27 Recently the combined ef-
fect of the magnetic field and the QR size has been clarified
from three up to six electrons by the exact diagonalization
approach28,29 also by focusing on the phase diagram, in the
radius versus magnetic field plane, where the spin and
angular-momentum transitions are shown.30

In this paper we study Ne electrons, interacting by a short-
range repulsion, confined in a one-dimensional �1D� QR.
First we adopt a Hartree-Fock �HF� approach and then we
include some corrections due to correlation effects. In Sec. II
we introduce the model and the basic blocks of our
calculations.

In Sec. III A we evaluate the many-body energies of the
basis functions numerically constructed by a set of single-
electron states. The spectrum and eigenfunctions of the QRs
are then calculated. The energy spectra of low-lying states of
the QR as a function of an external magnetic field B perpen-
dicular to the ring plane are also obtained. Phase diagrams in
the U-B �where U is the interaction strength�, R-B �where R
is the ring radius� and B-Ne are presented indicating a rich
variety of ground states.

In Sec. III B we discuss the effects of correlation by in-
cluding the first higher terms of the perturbative expansion in
the interaction. In Sec III C we discuss the basic ground-state
configurations by plotting the two-body density functions of
some of the many-body states. The latter configurations are
found to be regular polygons �RPs�.

II. MODEL AND THEORETICAL APPROACHES

Model. Let a Ne-electron planar QR be laid on the x-y
plane. A magnetic field B is applied perpendicularly to the
plane. The Hamiltonian of the QR reads as

H = ��
i

�pi −
e

c
A�ri��2

2m� 	 + 
�
i�j

U��ri − rj��� . �1�

The first and second parts of Eq. �1� are the single-particle
and interaction energies of the electrons, respectively, A is
the vector potential of the magnetic field and m� is the effec-
tive mass.

Single electron. The general form of the single-particle
eigenstates is �m�r�=eim� where m is the orbital angular-
momentum quantum numbers and the corresponding single-
particle energy is given by

�m = �m +
�

�0
�2

��R, �2�

where ��R= �2

2m�R2 , � is the magnetic flux threading the ring
��=	R2�, and �0=eh /c is the flux quantum. The single-
particle energies as a function of the magnetic field are re-
ported in the left panel of Fig. 1, while on the right we show
the dispersion relation, ��m�, and the quantized levels, by
focusing on the two symmetries of the shell structure �for
integer and half integer values of the ��B� /�0 ratio�.

Many-electron ring. We can use the obtained single-
particle eigenstates in order to construct the Hamiltonian in
Eq. �1� in the Fock space which can be written as
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† ĉ
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where 
�m ,s� denotes the single-particle state, ĉ

† creates

a particle in the state 
, n̂
 ĉ

† ĉ
 is the occupation number

operator and V�q� is the Fourier transform of the electron-
electron interaction. Because of the symmetries of Eq. �3�
due to the properties of electron-electron interaction, once
the number of electrons in the QR �Ne� is fixed, we can
characterize the ground state �GS� with its spin S and angular
momentum M.

Constant interaction (CI) approximation. In some special
cases, such as the one of very short-range interaction U�x�,
we can replace V
,��q� with constant coupling strengths �see
the Appendix�: g� �corresponding to a scattering process in-
volving electrons with the same spin� and g� �corresponding
to a scattering process involving electrons with opposite
spins�. Thus Eq. �3� becomes

H0

 = ��R�

m,s
�m +

�

�0
�2

cm,s
† cm,s

+ �
m,,q

�
s,�

g��s,��cm+q,s
† c−q,�

† cm,sc,��

+ �
m,,q

�
s,�

g��s,−��cm+q,s
† c−q,�

† cm,sc,�� . �4�

Notice that in the QR the interaction parameters, gi, do
not depend on the magnetic field. This yields a relevant dif-

ference with respect to the physics of a disk shaped quantum
dot.31,32

We recall that, when a magnetic field is present, we
should take into account also the Zeeman effect. However,
because in semiconductors the band effect renormalizes the
electron mass, the Zeeman splitting is strongly reduced,
while the kinetic energy increases. Thus it was customary to
neglect the effects of the Zeeman coupling in typical low
dimensional electron systems, such as quantum dots31,32 or
Quantum hall ferromagnets33 where the spin polarization is
essentially based on the effects of the repulsive interaction.

Hartree-Fock approximation. Once the number of elec-
trons Ne has been fixed, we numerically generate many-body
states �Ne,M,S,
 �
 labels different states with the same M
and S� and then evaluate the Hartree-Fock many-body spec-
tra by using the methods as outlined in Ref. 32. We obtain an
analytical expression for the many-body energies,

EM,S,

Ne ��� = ��R�Ne

��B�2

�0
2 + QM
 − 2M

��B�
�0

� + g�
Ne

2

4

+ g� Ne�Ne − 2�
4

− �g� − g��S2, �5�

where we introduced QM
=�m2 �the sum is on the occupied
single-particle states�. Thus the kinetic and the interaction
energy depend on two parameters, the kinetic one, ��R, and
the dimensionless interaction one, U= �g�−g�� / ���R�, re-
spectively.

Higher-order corrections. The Hartree-Fock approxima-
tion for one-dimensional correlated electrons can only work
to first order in the interaction amplitude. Thus higher order
terms have to be included, in order to describe a one-
dimensional system of correlated electrons. In general
renormalization-group methods are needed for a detailed
analysis of 1D interacting electrons.34 Moreover a perturba-
tive approach which includes just the lowest orders beyond
the HF approximation in our case works very well.35 The
restriction to the lowest perturbative terms is justified by the
small ratio g / ���R� that plays the role of g /vF in the usual
Luttinger model.36

III. RESULTS

In this paper we consider QRs with a radius between one
and a few hundred nanometers which have a longitudinal
energy ��R between 1 and 0.05 meV. In this case U can be
realistically assumed to take values in the range 0.5–10,
whereas the magnetic field corresponding to a threading flux
quantum can be easily obtained experimentally. In what fol-
lows we limit ourselves to a range of U between 0 and 4 and
a magnetic flux, ��B���0. This is the richest region of the
phase diagram.

A. Hartree-Fock approximation

Starting from Eq. �5� we can study the evolution of energy
levels of low-lying states as a function of B. First we discuss
the effects of magnetic field on the dispersion relation
�see Figs. 1 and 2�a��. Next we assume Ne=4Np+2 �Ne

FIG. 1. �Color online� �Left� Single-particle spectrum versus
magnetic field. �Right� The dispersion relation and the quantized
levels. The boxes in the figure represent energy levels and can be
filled by a pair of electrons with opposite spins. In the absence of
magnetic field �top� the lowest energy levels correspond to m=0,
m= �1 �degenerate�, and so on. When ��B�= �2n+1� /2�0 the
lowest degenerate states are given by m=n and m=n+1. When
��B�=n�0 the lowest energy state is given by m=n.
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=6,10, . . .� and present the results first for not interacting
electrons, then for interacting ones.

For a noninteracting electron system at vanishing mag-
netic field all the states below the Fermi level are doubly
occupied ��=2�. When a magnetic field corresponding to
��B�=�0 ���B�=n�0� is present, we have the same disper-
sion relation of B=0, where each electron acquires a quan-
tum, � �n��, of the angular momentum. At half field, ��B�
=�0 /2 ���B�= �n+1 /2��0 /2� there are two electrons in the
external shell �consisting of two degenerate states� which is
half filled �1���2�.

When also the electron-electron interaction is included,
some qualitative features can be found as follows:

�i� for a given M state, the energy vs. magnetic field curve
is a parabola. This arises from the fact that E��� in Eq. �5� is
a quadratic function of B;

�ii� the increase in B leads to the transitions of the ground
state;

�iii� due to these transitions, the energy of the ground state
oscillates with increasing B;

�iv� the electron-electron interaction can yield some spin
transitions; and

�v� the spin and angular-momentum values of the GS
states strongly depend on the strength of U.

The evolution of the ground state �M ,S� of the six-
electron QR in accordance with B ���B�� and U �or R� is
shown in Fig. 2�b� and 2�c� �for ten electrons in Fig. 3 top,
left� where the phase diagram is reported. The numbers in-
side the figure are �M ,S� of each specified domain. The main
features of the phase diagram obtained for 6 electrons are
stressed as follows:

�U=0 R→�� M increases in steps of six as B increases,
the transitions occur at values of �= �2n+1��0 /2, the total
spin S is always 0 whereas the lowest single-particle levels
are all doubly occupied.

�0�U�3 /2� The presence of the interaction allows for
the formation of spin polarized ground states at values of the
magnetic flux near �= �2n+1��0 /2, while at each transition
we have �M =3 and ��S�=1.

�3 /2�U�9 /5� The presence of the interaction allows
for the formation of spin polarized ground states also
at values of the magnetic flux near �= �n��0��0,2� ;
�6,2� ; �12,2�. . .�, while also in this case at each transition we
have �M =3 and ��S�=1.

(b)(a) (c)

(d) (e)

FIG. 2. �Color online� �a� Shells and filling for the main ground states of a six-electron ring as a function of the magnetic field and
interaction. �b�, �c� The evolution of the ground state as a function of the magnetic field and the electron-electron interaction for a
six-electron QR in HF approximation. Angular momenta up to 12 are shown. The numbers inside the figure are �M ,S� of each specified
domain. Ground states in the U-� plane �b� and in the R-B plane �c� �R is given in unit R0=�2 / �2m�U� �R�R−2, ��B��R2, and U�R−1�.
�d� HF contribution to the self energy and first orders bubble contribution included in our calculation. �e� Phase diagram of a six-electron QR
obtained including the first orders of perturbation. The effects of correlation are relevant just near the critical value of the interaction strength
�U=Ne /4�.
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�U�9 /5� The presence of very strong interaction allows
for the formation just of fully spin polarized ground states. In
this case at each transition we have �M =6 and ��S�=0.

The evolution of �M ,S� is also reported in the R-B plane
in order to allow for a comparison with the results of Ref. 28,
where also the Zeeman splitting is included.

By comparing the phase diagrams reported in Fig. 2�b�
and the shell filling of the corresponding states reported in
Fig. 2�a� we can argue that some symmetric configuration are
favored. We can easily generalize the results to the
Ne-electron case. At small R �i.e., for U�Ne /4� M increases
in steps of Ne /2 as B increases, while S oscillates between 0
and 1. The increase of M is mainly due to the kinetic term in
the Hamiltonian. For U�Ne /4 M increases in steps of Ne /2
as B increases, while S oscillates between Ne /2−1 and Ne /2.
For strong interaction just fully spin polarized ground states,
S=Ne /2 are allowed while M increases in steps of Ne /2, as B
increases.

When we analyze the ground-state transition with increas-
ing U for a fixed B and for Ne=6, we have three main fea-
tures: �i� low field: the increasing of interaction allows the
formation of spin polarized ground states with transitions
�0,0�→ �0,2�→ �3,3�; �ii� ����0 /2� the increasing of in-
teraction allows for the formation of spin polarized ground
states with transitions �0,0�→ �3,1�→ �3,3�; and �iii� ��
=�0 /2� the increasing of interaction allows for the formation

of spin polarized ground states with a transition �3,1�
→ �3,3�.

In general at U=Ne /4 a ground-state transition occurs, in
which the total spin changes �S=1→Ne /2 or S=0→Ne /2
−1�, while the total angular momentum remains the same.
For quite strong interaction �large radius� the fully polarized
states �Ne�k+1 /2� Ne /2 with integer k� dominate.

B. Perturbative terms

Next we can introduce the effects of correlation by taking
into account the first perturbative terms beyond the HF ap-
proximation �Fig. 2, bottom left�. Phase diagrams are pre-
sented indicating a rich variety of ground states for six �Fig.
2, bottom right� and ten �Fig. 3, top right� electrons.

When we analyze the ground-state transition with increas-
ing U at a fixed B for Ne=10 we have three main features: �i�
low field: the increasing of interaction allows for the forma-
tion of spin polarized ground states with transitions �0,0�
→ �0,2�→ �0,4�→ �5,5�; �ii� ��� .3�0� the increasing of
interaction allows for the formation of spin polarized ground
states with transitions �0,0�→ �5,1�→ �0,2�→ �5,3�
→ �0,4�→ �5,5�; and �iii� ��=�0 /2� the increasing of inter-
action allows for the formation of spin polarized ground
states with a transition→ �5,1�→ �5,3�→ �5,5�.

In general, when we include perturbative terms, an inter-
mediate phase with even values of the spin is shown near the
critical value U=Ne /2. At some values of the field the elec-
trons flip the spins one by one, while the angular momentum
oscillates between the two values �Ne /2 and 0�. For fields
near ��B�=�0 /2 the total spin changes with increasing U
from S=1 to Ne /2 two by two when we include perturbative
terms.

The effects of correlation are also shown in the diagram in
Fig. 3 �bottom�, usually reported as a phase diagram, where
the spin properties of the Ground State of the many-electron
system are shown as a function of the number of electrons
and the magnetic field. This diagram can be compared with
the analogous one obtained for disk shaped quantum dots
�where also the interaction strongly depends on magnetic
field�. We can argue that the correlation effects can be domi-
nant just near the transition from S=N /2 to S=0.

C. Ground-state configuration

The effects of the correlation on the many-body wave
functions are negligible, unless the strength of the interaction
U is �102. Thus, the GS properties can be explained by the
“magic number” theory37,38 which states that each regular
polygon is accessible only to a specific group of states hav-
ing specific M and S. If Ne electrons in a QR form a Ne-side
RP, the potential energy is minimized, hence the total energy
is minimized. It is clear that the states reported in the phase
diagram fulfill this property. The pursuit of the RP can be
demonstrated via the density functions that we introduce fol-
lowing the discussion reported in Ref. 28. So, we define the
two-body density functions, ���1 ,�2� and we put the first
electron, e1 at �1=0 location. Thus ���2� yields the distribu-
tion of the second electron e2, and the maximum of ���2� is
associated with the most probable location of e2. In our case,

FIG. 3. �Color online� �Top� The evolution of the ground state as
a function of magnetic field and electron-electron interaction for a
ten-electron QR. Angular momenta up to 10 are shown. Ground
State in the U-� plane in HF approximation �left� and �right� by
including the first perturbative terms. �Bottom� The GS of the
many-electron system shown as a function of the number of elec-
trons and the magnetic field. The effects of correlation are evident
for low fields near the transition to the spin polarized state.
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where correlation is negligible, the pair density can be writ-
ten in terms of the orbitals of the noninteracting system
which is obtained from a Slater determinant.39 When this
definition for the Hartree-Fock pair density is used, it can be
shown that the motion of electrons with antiparallel spins is
uncorrelated.40 Some examples of ���2� of the ground state
are plotted in Fig. 4 for Ne=6. The most regular configura-
tions correspond to �0,0�, �3,1�, and �3,3�, which yield the
main GS also in the corresponding phase diagram.

IV. CONCLUSIONS

In summary, a one-dimensional QR with Ne electrons sub-
jected to an external magnetic field is studied. We obtain the
energy spectra of low-lying states of the QR as a function of
B for different interaction strength values, U �or different
radius values�. As a result, the ground state can be deter-
mined, and thus the phase diagram, namely, the �M ,S� dia-
gram, can be generated. The diagram clearly shows how the
ground-state properties vary in accordance with B and U.
The physical mechanism of the variation is clarified by fo-
cusing on the correlation effects, which yield a rich variety
of phases near the critical value of the interaction strength.

Thanks to the HF approximation, we are able to write an
analytical expression for the many-body energy, which is
useful in order to explain the fundamental mechanism of the
spin transition based on the shell structure symmetries. Com-
paring with the phase diagram obtained in Ref. 28, we find a

transition between states in which the total spin changes
while the angular momentum remains the same.

The effects of correlation, introduced by taking into ac-
count the main perturbative terms, enrich the phase diagrams
near the critical points. Thus a varied phase diagram is ob-
tained, owing to correlation effects, by also obtaining the
spin flipping one by one �or two by two�.

However the perturbative terms do not modify signifi-
cantly the wave functions of the ground states. This allowed
us to show the two-body density functions. In this way, ac-
cording to earlier papers, it was shown that all ground states
were found to possess a RP configuration.28,29 The ground
states which are favored in the phase diagram are those with
a regular geometrical configuration, useful in order to mini-
mize the potential energy. Moreover, our approach also en-
ables us to produce a B−Ne phase diagram useful to compare
the physics of a QR with that of a disk shaped quantum dot.

From a theoretical point of view, our results can be com-
pared, and are in good agreement, with those obtained for a
few to several electrons �between three and six� by the exact
diagonalization approach28,29 �notice that in those calcula-
tions also the Zeeman splitting is included�. From an experi-
mental point of view, our prediction about the spin and
charge transitions could be tested with measurements analo-
gous to those reported in Refs. 31 and 41 for a disk shaped
quantum dot. In details, we have in mind a measurement
similar to that shown in Fig. 1 of Ref. 41, where the mag-
netic field evolution of the Coulomb blockade peaks for the
first Ne electrons was shown. Moreover a first comparison
can be based on the results reported in Fig. �2� of Ref. 16
even though the large width of the QR �W�250 nm� ana-
lyzed in that experiment introduces some relevant 2D effects
�see ��2 and the presence of spin polarized ��=1� states
also for a small number of electrons.

In this work we considered QRs patterned in a two-
dimensional �2D� electron gas at the interface of a semicon-
ductor heterostructure. Thus QRs with a radius between 100
and 500 nm have a longitudinal energy ��R between 1 and
0.05 meV, while a threading flux quantum corresponds to
some tens of Tesla, down to a few mT.42 The electron-
electron interaction g� can be estimated to range between 2
and 0.5 meV while U can be realistically assumed to be in
the range 0.5–10 depending on the width over radius ratio,
W /R, which can be assumed to be �0.1 in agreement with
Refs. 42 and 43.

APPENDIX: INTERACTION

The interaction parameter can be calculated starting from
the Coulomb electron-electron potential28,29

U�ri,rj� =
e2

8	�0�r
�d2 + R2 sin2���i − � j�/2�

, �A1�

where d is a small parameter that eliminates the singularity at
��i−� j�=0 and gives the effect of finite thickness of the ring,
�r is the relative static dielectric constant �e.g., 12.4 for
GaAs�. Thus we can evaluate the interaction parameters,
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FIG. 4. �Color online� The evolution of �2, for spin polarized
up, of the ground state in accordance with � for a 6 electron ring.
The panels correspond to the total spin from 0 to 3
��0,0�,,�3,1�,,�0,2�, and �3,3��. The number of up-spin polarized
electrons is N↑=Ne /2+S, thus the number of peaks in the plots
corresponds to N↑−1. Each subfigure has N↑−1 peaks which are
regularly spaced. This fact implies that, if e1 is fixed at �=0, the
peaks are the most probable locations of the other up electrons and
form electronic configuration with e1. The most regular configura-
tions correspond to �0,0�, �3,1�, and �3,3�, which yield the main GS
also in the corresponding phase diagram.
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g� =
e2

8	�0�rR

2KE�− R2/d2�
d/R

,

where KE gives the complete elliptic integral of the first kind,
while d /R is assumed as a constructive geometric parameter
�d can be estimated as the effective width of the Ring so that
even when g� shows a logarithmic divergence, the strongest
values of the coupling are of order 10�. While the g� cou-

pling never depends on the states of the interacting electrons
in agreement with the CI model, in general g� depends on the
relative momenta of the interacting electrons. In the limit of
a very short-range interaction g� =0 and g�=U, while for a
very long-range interaction g� =g� and the electron system
can be treated as a noninteracting one. Just in the intermedi-
ate regime the CI model can fail, especially for a few-
electron ring.
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